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The problem of finding the optimum shape of the holes in a perforated plate weak- 
ened by a triangular or square lattice of holes and subject to bending is con- 
sidered by methods based on the theory of functions of a complex variable. The 
criterion determining the optimum shape of thehole is based on the condition 
that no stress concentration should occur on the hole contour or, alternatively, 
that a plastic region should be created around the whole contour of the hole at 
exactly the same instant. 

i. In order to prevent stress concentrations from arising in solid objects, it is 
especially interesting to discover a surface contour which will not exhibit any propensity 
toward brittle fracture or plastic deformation in individual regions. 

Let us remind ourselves of the theory of bending as it applies to rigid (stiff) 

plates [i]. 

The displacement w of a plate normal to its surface satisfies the equation 

AAw = q (x,  y ) /O  (1 .1 )  

Here D = E h a / 1 2 ( 1  -- v 2) i s  t h e  c y l i n d r i c a l  r i g i d i t y  o f  t h e  p l a t e ,  q ( x ,  y)  i s  t h e  
t r a n s v e r s e  l o a d ,  h i s  t h e  t h i c k n e s s  o f  the  p l a t e ,  E and v a r e  t he  e l a s t i c  modulus  and P o i s -  
son c o e f f i c i e n t  o f  t he  p l a t e  m a t e r i a l ,  and h i s  t h e  L a p l a c e  o p e r a t o r .  In  t h e  c a s e  o f  q = 0 
we have  t he  b a s i c  r e p r e s e n t a t i o n s  [2]  

M ~ + M u  = -- 40 (i -}- ~) Re r (~ 
(1.2) 

M ~  - -  M ~  + 2 i H x y  = 2 D ( l  - -  ~) [~r  (z) + ~ ( z ) ] ,  N - - i N  u = - 4 D r  (z) 

Here Mx, My, and Hxy a r e ,  r e s p e c t i v e l y ,  t h e  s p e c i f i c  b e n d i n g  moment and t o r q u e ,  N x 
and Ny a r e  t he  s p e c i f i c  t r a n s v e r s e  f o r c e s  and ~(z )  and ~ ( z )  a r e  a n a l y t i c a l  f u n c t i o n s  o f  
t h e  complex v a r i a b l e  z = x + i y .  

2. Le t  t h e r e  be a d o u b l y  p e r i o d i c  t r i a n g u l a r  l a t t i c e  composed o f  unknown c u r v i t i n e a r  
a p e r t u r e s  ( h o l e s )  h a v i n g  t h e i r  c e n t e r s  a t  t h e  p o i n t s  

P ~  = m~l  + n ~  (m, n = O, __~ i ,  ! 2, ...) 
~1 = 2, m2 = 2 e'/~ 

Le t  us d e n o t e  the  c o n t o u r  o f  t h e  h o l e  h a v i n g  i t s  c e n t e r  a t  t h e  p o i n t  Pmn by Lmn and 
t he  r e g i o n  o u t s i d e  t he  c o n t o u r s  Lmn by D z.  

On t h e  unknown c o n t o u r  L o f  t he  h o l e ,  t h e  b o u n d a r y  c o n d i t i o n s  a r e  
inn 

M~ = M 0 ,  H~t = 0, Mr; = M .  = const, N, = 0, Nn = 0 ( 2 . 1 )  

( t  and n d e n o t e  t h e  d i r e c t i o n s  o f  t he  t a n g e n t  and no rma l  t o  t h e  c o n t o u r  o f  t h e  s o l i d  o b j e c t ) .  

In the case of an elastic solid the quantity M, = const requires determination in the 
course of the solution. For an elastoplastic material Eq. (2.1) represents a condition 
imposed upon the development of the plastic zone, i.e., it amounts to the requirement that 
at the instant of generation the plastic zone should embrace the whole contour of the 
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aperture at the same time, not penetrating into the interior of the solid. In this case 
M, = const is a specified quantity; for example, on the basis of the Tresca--St.Venant 
plasticity condition M, = Mo • osh2/4 (o s is the plasticity constant associated with ten- 
sile strain) if MtM n < 0. 

Let us transform to the parametric plane of the complex variable E by using the trans- 
formation z = m(E). The analytical function transforms the region Dz conformally into the 
region D E in the E plane, this latter region comprising the outsides of the circles rmn of 
radius X having their centers at the points Pmn- On the basis of the equations [2] 

M : ~ + M v  = M,~ + Mt ( ~ = ~ e  i~ 

M t - -  M,~ + 2~H~ t = ~o~' (~__!) ( M  v _ M,r + 2/~H:~) ( 2 . 2 )  
~ ~o' (~) 

and the boundary conditions (2.1), in order to determine the three analytical functions 
@(E) = r ,(~) = ~[m(E)] and m(E) we obtain a nonlinear boundary problem on Foo 

R e  q) (~) = a ( 2 . 3 )  

~2 t~  (~) ~ '  ( D  + ~ '  (D  * (D]  = X~bo )' ( D  
Mo �9 M.  M,  - -  Mo 

a = 4D (t + v) ' b ----- 23  (t - -  ~) ( 2 . 4 )  

T h e  b o u n d a r y  c o n d i t i o n  ( 2 . 4 )  may  b e  g i v e n  a d i f f e r e n t  f o r m .  

It follows from the solution of the Dirichlet problem (2.3) that in the region D~ 

(p (~) = a ( 2 . 5 )  

Allowing for (2.5), we may write the boundary conditions (2.4) on Foo in the form 

~2o' (~) ~ (~) = ~2bo' ( ~ )  ( 2 . 6 )  

We seek the functions ~(~) and ~(~) in the form of series [3, 4], 

o= %~+~(~) (0  (2.7) 

k=O 

o o  X2k+2'~ (2/r (~) ( 2 . 8 )  

where y(z) is an elliptic Weierstrass function, 

(~) = ~ -  + 0 - P ~ ) ~  

Let us; derive the relationships which the coefficients of the expressions (2.7) and 
(2.8) must satisfy. By equating the principal vector of the forces acting on the arc con- 
necting two congruent points in D to zero we find that 

a - -  a ( t - - v )  ~ 2  ~ 0 = 0  ( 2 . 9 )  
4 V ~  (i + ,,) 

The symmetry conditions for a perforated plate with a triangular lattice of holes may 
be written as follows: 

(p (~ev~.~) = q) (~), ~p (~e' .~)  = e-,~.~ ~ (~) 

and reduced to the equations 

~,~+~_+2 = A8~• = 0 for k = 0, I, ... (2. i0) 

In order to set up equations for the remaining coefficients on the presentations (2.7) 
and (2.8) of the functions $(E) and ~(E), we expand these functions in Laurent series in 
the neighborhood of the point E = 0 

~8k+2 "~ . ~  r3j+~,3k~ 
k=o k~o j==o 

(2.11) 
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TABLE 1 

"Coeff. of I 
the un- I 
known i 
functionsJ 

.46 
B~/M~ 

A 6  

A~ 
~I  M ~ 
BdM~ 

0.2 

0.00003 
--1.03777 

0.00003 

0.00003 
0.00000 

--t.03777 
0.00003 
0.00000 

X 

t l 
First approximation 

i oooo   1 o.oo   I o oo o 
- - t  .08920 --1.17040 - - t .  29441 

0.00036 0.00219 0.00926 
�9 Second approximation 

0.00033 [ 0.00i88 0.00716 
0.0000t I 0.00065 0.00025 

--i.08920 -- f .  i7040 --i.2944i 
0.00036 0.00219 0.00926 
0.00001 0.00007 0.00026 

0.6 I 0.7 

I 0.02136 
--t.48620 

0.03i70 

0.02137 
0.00075 

--t.48620 
0.03t7i 
0.00043 

I 0.05374 
--1.79550 

0.09551 

0.05392 
0.00i88 

--t.79547 
0.09585 

--0.00i87 

oo oo 

(2/~'  2k + l)I gY+~+l 
rj~ ---- (2/)! (2k + t)I 2 ~j+2~+~ ( 2 . 1 2 )  

r gi+~+l = ~ 1 1 

In the boundary condition'S2.6) for the contour P o o ( ~  = %e i0) we now substitute the 
corresponding Laurent series for ~(~), ~'(~) and ~' (~) and compare the coefficients of 
e 6k0 (k = 0, +i, +2, .... ); we obtain an infinite system of nonlinear algebraic equations 
in B~k + 2, A~k. The equations of the first approximation take the form 

cf32 + Aoyo + A o ~ ! " r 3 ~  = bc, c~s + Aaf~ = bAeXt'rs~ 
C?o + Asyl  -{- Ao~2Xl~r32 = bA~, c = t + A6X'ro2 ( 2 . 1 3 )  
?y ---- {~raj+$,9% ~176 -}-[~8r3j§ 6j+12 (] ---- O, 1) 

The results of calculations carried out in the two first approximations are given in 
Table I, in which M: = Mo/D(I -- ~). 

If in Eq. (2.12) we put ~ = %e i0 we obtain the equation for the optimum shape of the 
hole, 

/{ = 1 o~ {Xe i~ I - -  / (0) ( 2 . 1 4 )  

In the first approximation 

The constant M, equals 

M, =. O (i -- ~) ~#'-- Me (2. 16) 

For an elastoplastic plate Eq. (2.16) is the condition for the solubility of the origi- 
nal problem. 

3. Let there be a doubly periodic square lattice with unknown curvilinear holes hav- 
ing their centers at the points 

Pran = m(ol 7{- n~2 (m, r, ---- O, ----J- J, -f- 2, ...) 
o) I -  2, (o2 =2~  

Let us consider the problem of finding the optimum shape of the hole in the square 
lattice. In order to obtain the solution we must repeat the discussions of Sec. 2. 

We derive the solution 

M o + M .  ~ t - - v  
q0(~)= 4D(1+~' )  = 8 1 ~  ~k2 ( 3 . 1 )  
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TABLE 2 

Coeffs. I 
of the [ 
unknown[ 
functi:on t 0.z (~.7 [ 0.6 

A4 I 0.00095 I 0.07668 ~2/M1 --t.03305 --1.39320 
~6/M1 0.000fi7 0.10558 

0.00007 
O.OOO00 

--1.03305 
0.00t00 

--0.00000 

[ 0 . 3 [  o.~ [ 0.5 

First approximation 

1 0 . 0 0 4 7 8 1  0.0i5t3 I 0.03694 
--t.07756 --t.t4649 --t.24479 

0.00516 0 . 0 1 7 3 3  0.04597 
Second approximation 

0.00515 0 . 0 1 7 3 3  0.04605 
0.00000 0.00008 0.00045 

--t.07756 --1.14644 --t.24736 
0.00555 0 . 0 1 9 8 6  0.05730 

--0.00002 --0.00026 --0.00207 

A4 
A8 

~lo/ M1 

0.i0671 
0.00i97 

--t.38898 
0.14658 

--0.0i292 

0.14250 
--1.59478 

0.21805 

0.22750 
0.00700 

--i.56897 
0.34295 

--0.067t3 

The functions ~(~) and m(~) are defined by the series (2.7) and (2.8). Thus, we 
have 

[~o = 0 ,  [~4~---- A4~+~---- 0 for k = 0, t . . . .  ( 3 . 2 )  

The resuits of calculations carried out in the first two approximations are given in 
Tab le 2. 

The constant M, equals 

M ,  = 2 D (i -- v) ~ - -  Mo ( 3 . 3 )  

form 
The equation for the optimum shape of the hole in the first approximation takes the 

i. 

2. 

3. 

4. 
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