ON THE OPTIMUM SHAPE OF APERTURES FOR A PERFORATED
PLATE SUBJECT TO BENDING

V. M. Mirsalimov UDC 539.374

The problem of finding the optimum shape of the holes in a perforated plate weak-
ened by a triangular or square lattice of holes and subject to bending is con-
sidered by methods based on the theory of functions of a complex variable. The
criterion determining the optimum shape of the hole is based on the condition
that no stress concentration should occur on the hole contour or, alternatively,
that a plastic region should be created around the whole contour of the hole at
exactly the same instant.

1. 1In order to prevent stress concentrations from arising in solid objects, it is
especially interesting to discover a surface contour which will not exhibit any propensity
toward brittle fracture or plastic deformation in individual regions.

Let us remind ourselves of the theory of bending as it applies to rigid (stiff)
plates [1].

"The displacement w of a plate normal to its surface satisfies the equation

AAw = ¢ (z, y)/D (1.1)

Here D = Eh®/12(1L — v?®) is the cylindrical rigidity of the plate, q(x, y) is the
transverse load, h is the thickness of the plate, E and v are the elastic modulus and Pois-
son coefficient of the plate material, and A is the Laplace operator. In the case of q =0
we have the basic representations [2]

M,+M,=—4D (1 4 v) Re D (2)
My— M, + 2H, =2D (1 — ) EO () + ¥ (@, N — iN, = — 4D0" (3)
Here Mg, My, and Hygy are, respectively, the specific bending moment and torque, Ny

and Ny~are the specific transverse forces and ¢(z) and ¥(z) are analytical functions of
the complex variable z = x + iy.

(1.2)

2. Let there be a doubly periodic triangular lattice composed of unknown curvilinear
apertures (holes) having their centers at the points

._Pmn=mm1+nm2 (m:n'=0? ii,iz, ---)
©; = 2, @y = 2 e¥ix :
Let us denote the contour of the hole having its center at the point Ppp by Lyp and
the region outside the contours Ly, by Dz' ‘
On the unknown contour L of the hole, the boundary conditions are
Mn=M0’ Hﬂt=01 Mt'—':M*:_—CODSt, Nt=O, Nn=0 (2-1)
(t and n denote the directions of the tangent and normal to the contour of the solid object).

In the case of an elastic solid the quantity M, = const requires determination in the
course of the solution. TFor an elastoplastic material Eq. (2.1) represents a condition
imposed upon the development of the plastic zone, i.e., it amounts to the requirement that
at the instant of generation the plastic zone should embrace the whole contour of the
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aperture at the same time, not penetrating into the interior of the solid. 1In this case
M, = const is a specified quantity; for example, on the basis of the Tresca-—S8t.Venant
plasticity condition M, = M, * osh2/4 (og is the plasticity constant associated with ten-

sile strain) if MMy < O.
Let us transform to the parametric plane of the complex variable ¢ by using the trans-
formation z = w(z). The analytical function transforms the region Dy conformally into the

region D, in the ¢ plane, this latter region comprising the outsides of the circles Tppy of
radius A having their centers at the points Ppy. On the basis of the equations [2]

Mx+My:Mn +- Mt (Cz)"eie)

M, — My 4 2H,, = 2—‘;’;_%— (M, — M+ 2iH,)

and the boundéry conditions (2.1), in order to determine the three analytical functions
¢(g) = 2[w(z)], ¥(z) = ¥[w(z)] and w(z) we obtain a nonlinear boundary problem on oo

(2.2)

Reo(l)=a (2.3)
& lo (T) ¢’ () + o' (5) ¥ (D] = AMbo’ (§)
Mo+ M, M, — M,
=—pury’ ’=ma—w (2.4)

The boundary condition (2.4) may be given a different form.

It follows from the solution of the Dirichlet problem (2.3) that in the region D

4
() =a (2.5)
Allowing for (2.5), we may write the boundary conditiomns (2.4) on T in the form
Lo’ (5 ¥ () = Mbo” (§) (2.6)
We seek the functions ¥(Z) and w(g) in the form of series [3, 4],
> 2,242, (2%) 2.7
PO =Ro+ 3 fora T 2.7
i A 242, (2h-1) 2.8)
o) =0+ k§0 Askie __(ETFFTSI(‘O—

where y(z) is an elliptic Weierstrass function,

1 ! 1 1
10 =4+ [~ 7]
. # ;,n ("7_“})11m)2 P‘m‘nz
Let us derive the relationships which the coefficients of the expressions (2.7) and
(2.8) must satisfy. By equating the principal vector of the forces acting on the arc con-
necting two congruent points in DC to zero we find that

_ n(t—w)
4V3(U+v)
The symmetry conditions for a perforated plate with a triangular lattice of holes may
be written as follows:

BaAZ%, Be=0 (2.9)

9 (Lehim) = g (), P (Lein) = e=im ()
o (Letin) = e o ()

and reduced to the equations
Portare = Agnxe =0 for £k =0,1, ... (2.10)

In order to set up equations for the remaining coefficients on the presentations (2.7)

and (2.8) of the functions ¥(z) and w(zg), we expand these functions in Laurent series in
the neighborhood of the point £ = 0

ool © )
2 8h+2 . . i,
P (L) = Z Borso (—*; ) + 2 .Bsk+z7vsh+22 Faisa skl (2.11)
k=0 =0

k=0
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TABLE 1

Coeff, of
the un-
known

functions

0.2 0.3 T 0.4 0.5 0.6 0.7

First approximation

As 0.00003 0.00033 0.00188 0.00716 0.02436 0.05374
3o/My | —1.03777 | —1.08920 | —1.17040 | —1.29441 | —1.48620 | —1.79550
Bs/M; 0.00003 0.00036 0.00219 0.00926 0.03170 0.09551

» - Second approximation
As 0.00003 0.00033 0.00188 0.00716 0.02137 0.05392

Az 0.00000 0.00001 0.00065 0.00025 0.00075 0.00188
BofMy | —1.03777 | —1.08920 | —1.17040 | —1.29441 | —1.48620 | —1.79547
Bef M1 0.00003 0.00036 0.00219 0.00926 | - 0.03171 0.09585
Bu/My | ©0.00000 0.00001 0.00007 0.00026 0.00043 | —0.00187

S Agh o o
0@ =t— 3 gt (& )° L3 Askv"z Toneoi o

k=1 k=1
@2 ) g,
rjk - (2]-)! (2k + 1)! 22i+2/t+2 . (2 . 12)

1 1
&itkn = z m, T = ——P.,,m

In the boundary condltlon (2 6) for the contour Poo(C = Xe ) we now substitute the
correspondlng Laurent series for ¢(Z), w'(Z) and w'(z) and compare the coefficients of
efk6 (k = 0, 1, #2, ...); we obtain an infinite system of nonlinear algebraic equations
in Bsk + 2> Ask. The equations of the first approximation take the form

eBy + Agve + AP\ Prgs = be, cBs + Aeﬁé = bAAry,
ey + Agyr + AePahrss = bAg, ¢ = 1 + Aghlry, (2.13)
V5 = Porsjia, heit + Barsjip shéit12 (j = 0, 1)

The results of calculations carried out in the two first approximations are given in
Table 1, in which M; = My/D(1 — v).

If in Eq. (2.12) we put ¢ = Ael® we obtain the equation for the optimum shape of the
hole,

R=]o (| =f(0) (2.14)
In the first approximation

]P:M@}@wﬁ@ d=ﬁ+(%+ klﬁ)&’

(2.15)
dl = 2CA6 (%—' 7\/127‘32—-" —;——‘)
The constant M, equals
M, V_ D{1 —v)BA2 — M, (2.16)

For an elastoplastic plate Eq. (2.16) is the condition for the solubility of the origi-
nal problem.

3. Let there be a doubly periodic square lattice with unknown curvilinear holes hav-
ing their centers at the points

P, =ma; +no, mn=20,+1,+2,..)
w; = 2, Wy = 2l

Let us consider the problem of finding the optimum shape of the hole in the square
lattice. In order to obtain the solution we must repeat the discussions of Sec. 2.

We derive the solution

] M 1—
00 = —Ihars = — Ty b (3.1)

844



TABLE 2

Coeffs. 2

of the

unknown ;

function 0.2 0.3 0.4 0.5 0.6 0.7
First approximation

As 0.00095 0.00478 0.01513 0.036%4 0.07668 0.14250

Bo/My | —1.03305 | —1.07756 | —1.14649 | —1.24479 | —1.39320 | —1.59478

Bs/ M1 0.00097 0.00516 0.01733 0.04597 0.10558 0.21805
Second approximation

As 0.00097 0.00515 0.01733 0.04605 0.10671 0.22750

As 0.00000 0.00000 |. 0.00008 0.00045 0.00197 0.00700

Bo/My | —1.03305 | —1.07756 | —1.14644 | ~—1.24736 | —1.38893 | —-1.56897

Bel My 0.00100 0.00555 0.01986 0.05730 0.14658 0.34295

Bio/M; | —0.00000 | —0.00002 | —0.00026 | —0.00207 | —0.01292 | —0.06713

The
have

functions ¢(g) and w(z) are defined by the series (2.7) and (2.8). Thus, we

ﬁo=0"f54k=4‘14k+2=0 for k=01, .. (3.2)

The results of calculations carried out in the first two approximations are given in

Table 2.

The constant M, equals

My =-3-D(1 —v)BA* — M, (3.3)

The
form

equation for the optimum shape of the hole in the first approximation takes the

1 1
-5 + 55 Mora® )

dy = 2c4, (%mrn - %) e =14+ Adiry

R?® = \*(d + d; cos 40), d=c2+A42( (.6

LITERATURE CITED

1. S. P, Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill
(1959). .

2. G. N. Savin, Stress Concentration around Holes [in Russian], Gostekhizdat, Moscow—
Leningrad (1951).

3. E. I. Grigolyuk and L. A. Fil'shtinskii, Perforated Plates and Shells [in Russian],
Nauka, Moscow (1970).

4. L. M. Kurshin and I. D. Suzdal'nitskii, "Elastoplastic problem for a plate weakened
by a doubly periodic system of circular holes," Prikl. Matem. Mekh., 32, No. 3 (1968).

845



